Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structures of Phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity.

Identifieur interne : 001655 ( Main/Exploration ); précédent : 001654; suivant : 001656

Structures of Phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity.

Auteurs : Laurence S. Boutemy [Royaume-Uni] ; Stuart R F. King ; Joe Win ; Richard K. Hughes ; Thomas A. Clarke ; Tharin M A. Blumenschein ; Sophien Kamoun ; Mark J. Banfield

Source :

RBID : pubmed:21813644

Descripteurs français

English descriptors

Abstract

Phytopathogens deliver effector proteins inside host plant cells to promote infection. These proteins can also be sensed by the plant immune system, leading to restriction of pathogen growth. Effector genes can display signatures of positive selection and rapid evolution, presumably a consequence of their co-evolutionary arms race with plants. The molecular mechanisms underlying how effectors evolve to gain new virulence functions and/or evade the plant immune system are poorly understood. Here, we report the crystal structures of the effector domains from two oomycete RXLR proteins, Phytophthora capsici AVR3a11 and Phytophthora infestans PexRD2. Despite sharing <20% sequence identity in their effector domains, they display a conserved core α-helical fold. Bioinformatic analyses suggest that the core fold occurs in ∼44% of annotated Phytophthora RXLR effectors, both as a single domain and in tandem repeats of up to 11 units. Functionally important and polymorphic residues map to the surface of the structures, and PexRD2, but not AVR3a11, oligomerizes in planta. We conclude that the core α-helical fold enables functional adaptation of these fast evolving effectors through (i) insertion/deletions in loop regions between α-helices, (ii) extensions to the N and C termini, (iii) amino acid replacements in surface residues, (iv) tandem domain duplications, and (v) oligomerization. We hypothesize that the molecular stability provided by this core fold, combined with considerable potential for plasticity, underlies the evolution of effectors that maintain their virulence activities while evading recognition by the plant immune system.

DOI: 10.1074/jbc.M111.262303
PubMed: 21813644
PubMed Central: PMC3195559


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structures of Phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity.</title>
<author>
<name sortKey="Boutemy, Laurence S" sort="Boutemy, Laurence S" uniqKey="Boutemy L" first="Laurence S" last="Boutemy">Laurence S. Boutemy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH</wicri:regionArea>
<wicri:noRegion>Norwich NR4 7UH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="King, Stuart R F" sort="King, Stuart R F" uniqKey="King S" first="Stuart R F" last="King">Stuart R F. King</name>
</author>
<author>
<name sortKey="Win, Joe" sort="Win, Joe" uniqKey="Win J" first="Joe" last="Win">Joe Win</name>
</author>
<author>
<name sortKey="Hughes, Richard K" sort="Hughes, Richard K" uniqKey="Hughes R" first="Richard K" last="Hughes">Richard K. Hughes</name>
</author>
<author>
<name sortKey="Clarke, Thomas A" sort="Clarke, Thomas A" uniqKey="Clarke T" first="Thomas A" last="Clarke">Thomas A. Clarke</name>
</author>
<author>
<name sortKey="Blumenschein, Tharin M A" sort="Blumenschein, Tharin M A" uniqKey="Blumenschein T" first="Tharin M A" last="Blumenschein">Tharin M A. Blumenschein</name>
</author>
<author>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
</author>
<author>
<name sortKey="Banfield, Mark J" sort="Banfield, Mark J" uniqKey="Banfield M" first="Mark J" last="Banfield">Mark J. Banfield</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21813644</idno>
<idno type="pmid">21813644</idno>
<idno type="doi">10.1074/jbc.M111.262303</idno>
<idno type="pmc">PMC3195559</idno>
<idno type="wicri:Area/Main/Corpus">001656</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001656</idno>
<idno type="wicri:Area/Main/Curation">001656</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001656</idno>
<idno type="wicri:Area/Main/Exploration">001656</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structures of Phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity.</title>
<author>
<name sortKey="Boutemy, Laurence S" sort="Boutemy, Laurence S" uniqKey="Boutemy L" first="Laurence S" last="Boutemy">Laurence S. Boutemy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH</wicri:regionArea>
<wicri:noRegion>Norwich NR4 7UH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="King, Stuart R F" sort="King, Stuart R F" uniqKey="King S" first="Stuart R F" last="King">Stuart R F. King</name>
</author>
<author>
<name sortKey="Win, Joe" sort="Win, Joe" uniqKey="Win J" first="Joe" last="Win">Joe Win</name>
</author>
<author>
<name sortKey="Hughes, Richard K" sort="Hughes, Richard K" uniqKey="Hughes R" first="Richard K" last="Hughes">Richard K. Hughes</name>
</author>
<author>
<name sortKey="Clarke, Thomas A" sort="Clarke, Thomas A" uniqKey="Clarke T" first="Thomas A" last="Clarke">Thomas A. Clarke</name>
</author>
<author>
<name sortKey="Blumenschein, Tharin M A" sort="Blumenschein, Tharin M A" uniqKey="Blumenschein T" first="Tharin M A" last="Blumenschein">Tharin M A. Blumenschein</name>
</author>
<author>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
</author>
<author>
<name sortKey="Banfield, Mark J" sort="Banfield, Mark J" uniqKey="Banfield M" first="Mark J" last="Banfield">Mark J. Banfield</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Phytophthora infestans (chemistry)</term>
<term>Phytophthora infestans (pathogenicity)</term>
<term>Plant Diseases (microbiology)</term>
<term>Protein Folding (MeSH)</term>
<term>Protein Multimerization (MeSH)</term>
<term>Protein Structure, Quaternary (MeSH)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Virulence Factors (chemistry)</term>
<term>Virulence Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Facteurs de virulence (composition chimique)</term>
<term>Facteurs de virulence (métabolisme)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Multimérisation de protéines (MeSH)</term>
<term>Phytophthora infestans (composition chimique)</term>
<term>Phytophthora infestans (pathogénicité)</term>
<term>Pliage des protéines (MeSH)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Structure quaternaire des protéines (MeSH)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fungal Proteins</term>
<term>Virulence Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Virulence Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Facteurs de virulence</term>
<term>Phytophthora infestans</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de virulence</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Protein Folding</term>
<term>Protein Multimerization</term>
<term>Protein Structure, Quaternary</term>
<term>Protein Structure, Secondary</term>
<term>Protein Structure, Tertiary</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Multimérisation de protéines</term>
<term>Pliage des protéines</term>
<term>Spécificité d'espèce</term>
<term>Structure quaternaire des protéines</term>
<term>Structure secondaire des protéines</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phytopathogens deliver effector proteins inside host plant cells to promote infection. These proteins can also be sensed by the plant immune system, leading to restriction of pathogen growth. Effector genes can display signatures of positive selection and rapid evolution, presumably a consequence of their co-evolutionary arms race with plants. The molecular mechanisms underlying how effectors evolve to gain new virulence functions and/or evade the plant immune system are poorly understood. Here, we report the crystal structures of the effector domains from two oomycete RXLR proteins, Phytophthora capsici AVR3a11 and Phytophthora infestans PexRD2. Despite sharing <20% sequence identity in their effector domains, they display a conserved core α-helical fold. Bioinformatic analyses suggest that the core fold occurs in ∼44% of annotated Phytophthora RXLR effectors, both as a single domain and in tandem repeats of up to 11 units. Functionally important and polymorphic residues map to the surface of the structures, and PexRD2, but not AVR3a11, oligomerizes in planta. We conclude that the core α-helical fold enables functional adaptation of these fast evolving effectors through (i) insertion/deletions in loop regions between α-helices, (ii) extensions to the N and C termini, (iii) amino acid replacements in surface residues, (iv) tandem domain duplications, and (v) oligomerization. We hypothesize that the molecular stability provided by this core fold, combined with considerable potential for plasticity, underlies the evolution of effectors that maintain their virulence activities while evading recognition by the plant immune system.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21813644</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>12</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>286</Volume>
<Issue>41</Issue>
<PubDate>
<Year>2011</Year>
<Month>Oct</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Structures of Phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity.</ArticleTitle>
<Pagination>
<MedlinePgn>35834-42</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M111.262303</ELocationID>
<Abstract>
<AbstractText>Phytopathogens deliver effector proteins inside host plant cells to promote infection. These proteins can also be sensed by the plant immune system, leading to restriction of pathogen growth. Effector genes can display signatures of positive selection and rapid evolution, presumably a consequence of their co-evolutionary arms race with plants. The molecular mechanisms underlying how effectors evolve to gain new virulence functions and/or evade the plant immune system are poorly understood. Here, we report the crystal structures of the effector domains from two oomycete RXLR proteins, Phytophthora capsici AVR3a11 and Phytophthora infestans PexRD2. Despite sharing <20% sequence identity in their effector domains, they display a conserved core α-helical fold. Bioinformatic analyses suggest that the core fold occurs in ∼44% of annotated Phytophthora RXLR effectors, both as a single domain and in tandem repeats of up to 11 units. Functionally important and polymorphic residues map to the surface of the structures, and PexRD2, but not AVR3a11, oligomerizes in planta. We conclude that the core α-helical fold enables functional adaptation of these fast evolving effectors through (i) insertion/deletions in loop regions between α-helices, (ii) extensions to the N and C termini, (iii) amino acid replacements in surface residues, (iv) tandem domain duplications, and (v) oligomerization. We hypothesize that the molecular stability provided by this core fold, combined with considerable potential for plasticity, underlies the evolution of effectors that maintain their virulence activities while evading recognition by the plant immune system.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Boutemy</LastName>
<ForeName>Laurence S</ForeName>
<Initials>LS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>King</LastName>
<ForeName>Stuart R F</ForeName>
<Initials>SR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Win</LastName>
<ForeName>Joe</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hughes</LastName>
<ForeName>Richard K</ForeName>
<Initials>RK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Clarke</LastName>
<ForeName>Thomas A</ForeName>
<Initials>TA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Blumenschein</LastName>
<ForeName>Tharin M A</ForeName>
<Initials>TM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kamoun</LastName>
<ForeName>Sophien</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Banfield</LastName>
<ForeName>Mark J</ForeName>
<Initials>MJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>3ZR8</AccessionNumber>
<AccessionNumber>3ZRG</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BBS/E/J/000C0624</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>08</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037521">Virulence Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="Y">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="Y">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020836" MajorTopicYN="N">Protein Structure, Quaternary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037521" MajorTopicYN="N">Virulence Factors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21813644</ArticleId>
<ArticleId IdType="pii">M111.262303</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M111.262303</ArticleId>
<ArticleId IdType="pmc">PMC3195559</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2928-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19794118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Apr;17(4):394-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15077672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(8):e2875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16369096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Jul 26;346(6282):385-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2374611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 10;306(5703):1957-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Mar 16;492(3):193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11257493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1002-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16929101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Mar;22(3):659-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 Nov;10(6):795-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19849785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):48-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16369093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 1;450(7166):115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1540-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 24;102(21):7766-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2256-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2349-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1999 Aug;55(Pt 8):1421-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10417410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Dec 1;19(22):1925-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19879144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):392-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21458359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jul 14;313(5784):220-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16840699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(9):755-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Jun 3;121(5):749-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15935761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 May 25;107(21):9909-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1549-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17421-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20847293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7584402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2288-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W545-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1232-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Mar;22(3):269-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19245321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Oct;48(2):165-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16965554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Sep 21;372(3):774-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4874-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):1118-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18390593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Aug 15;21(16):3369-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15947016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Dec 17;583(24):3938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19913541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr A. 2008 Jan;64(Pt 1):112-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18156677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2001 Dec;11(6):725-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Banfield, Mark J" sort="Banfield, Mark J" uniqKey="Banfield M" first="Mark J" last="Banfield">Mark J. Banfield</name>
<name sortKey="Blumenschein, Tharin M A" sort="Blumenschein, Tharin M A" uniqKey="Blumenschein T" first="Tharin M A" last="Blumenschein">Tharin M A. Blumenschein</name>
<name sortKey="Clarke, Thomas A" sort="Clarke, Thomas A" uniqKey="Clarke T" first="Thomas A" last="Clarke">Thomas A. Clarke</name>
<name sortKey="Hughes, Richard K" sort="Hughes, Richard K" uniqKey="Hughes R" first="Richard K" last="Hughes">Richard K. Hughes</name>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
<name sortKey="King, Stuart R F" sort="King, Stuart R F" uniqKey="King S" first="Stuart R F" last="King">Stuart R F. King</name>
<name sortKey="Win, Joe" sort="Win, Joe" uniqKey="Win J" first="Joe" last="Win">Joe Win</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Boutemy, Laurence S" sort="Boutemy, Laurence S" uniqKey="Boutemy L" first="Laurence S" last="Boutemy">Laurence S. Boutemy</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001655 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001655 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21813644
   |texte=   Structures of Phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21813644" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024